import numpy as np from sklearn.cluster import KMeans import matplotlib.pyplot as plt # Sample data: customer_id, total_purchases, avg_time_between_purchases (hours) customer_data = np.array([ [1, 25, 0.5], [2, 10, 5], [3, 15, 2], [4, 30, 1], [5, 7, 10], [6, 20, 3], [7, 12, 7], [8, 28, 0.8], [9, 6, 12], [10, 18, 1.5] ]) # Extract customer IDs and feature data customer_ids = customer_data[:, 0].astype(int) features = customer_data[:, 1:] # Perform k-means clustering n_clusters = 2 kmeans = KMeans(n_clusters=n_clusters, random_state=42) cluster_labels = kmeans.fit_predict(features) # Find the cluster with the lowest average time between purchases impulsive_cluster = np.argmin(kmeans.cluster_centers_[:, 1]) # Get the customer IDs in the impulsive cluster impulsive_buyers = customer_ids[cluster_labels == impulsive_cluster] print("Impulsive buyers:", impulsive_buyers) # Visualize the clustering results (optional) plt.scatter(features[:, 0], features[:, 1], c=cluster_labels, cmap='viridis') plt.scatter(kmeans.cluster_centers_[:, 0], kmeans.cluster_centers_[:, 1], c='red', marker='x') plt.xlabel('Total Purchases') plt.ylabel('Average Time Between Purchases (hours)') plt.show()
top of page

SAMPLE. Sunglasses

0006
$179.95
In stock
1
Product Details

The Eugene's sleek silhouette combines a metal rim and bridge with dark, subtle hardwoods for a timeless and refined look. The simple aesthetic complements a wide variety of face shapes, a perfect choice for anyone desiring sharp, classic style. The Eugene is available with either a Grey Carl Zeiss or green G15 polarized lens. G15 lenses were originally developed for US Air Force pilots.

Every pair of Shwood Select glasses comes fitted with polarized lenses and paired with a semi-hard travel case, hand sewn from premium grade leather. Available for purchase through SurfRide.

Save this product for later
bottom of page